
Homework 3
Math 117 - Summer 2022

1) (4 points) Let V be finite dimensional and let W ⊆ V be a subspace. Recall the defi-
nition of the annihilator of W, W o from class. Prove using dual basis that

dim(W o) = dim(V ) − dim(W )

(hint: extend basis....)

Solution:

2) (3 points) Let V be any vector space (potentially infinite dimensional). Prove that

(V /W )∗ ≃W o

(Hint: Universal property of quotient....)
Remark: This isomorphism gives another proof of problem 1, in the case when V is finite
dimensional

Solution:

3) (3 points) Let V, W be finite dimensional vector spaces over F and let T ∶ V → W be a
linear map. Recall the isomorphism we constructed in class ΦV ∶ V → V ∗∗ by sending v to
evv. Prove that the following diagram commutes

V V ∗∗

W W ∗∗

ΦV

ΦW

T T ∗∗

ie, that ΦW ○ T = T ∗∗ ○ ΦV (Hint: Recall that T ∗∗ ∶ V ∗∗ → W ∗∗ sends a linear functional
φ ∶ V ∗ → F to the linear functional φ○T ∗ ∶W ∗ → F. That is T ∗∗(φ) = φ○T ∗ ∈W ∗∗. You will
then evaluate what this is on a linear functional γ ∈W ∗ )

Solution:

4) Let V be an n-dimensional vector space. We call a subspace of dimension n-1 a hyperplane.

(a) (1 point) If φ ∶ V → F is a nonzero linear functional, prove that ker(φ) is a hyperplane



(b) (2 points) Prove moreover that every hyperplane is the kernal of a nonzero linear
functional.

(c) (2 points) More generally, prove that a subspace of dimension d is the intersection of
n-d hyperplanes (ie, from part b, is the intersection of n-d kernals of linear functionals).
(Hint: Dual basis can be helpful here...)

Solution:

5) Let V, W be finite dimensional vector spaces over F.

(a) (3 points) Prove that
V ⊗W ∗ ≃ L(V,W )

(b) (2 points) Use this to prove that

(V ⊗W )∗ ≃ L(V,W ∗)

Unimportant Remark: Writing out the duals, this isomorphism above is saying that

L(V ⊗W,F) ≃ L(V,L(W,F))

That is, maps out of the tensor product of V and W into F correspond to maps from V into
maps from W to F. Such a result is in fact true more generally if we replace F with any
other vector space, and is a foundational result in category theory/algebra: the so called
“tensor-hom adjunction.” Cool stuff

Solution:

5’) (You can either do the 5 above or this problem)
Prove that f and g are inverses of each for the examples we did in class:

(a)

f ∶ V ⊗W →W ⊗ V that sends the simple tensor

v ⊗w → w ⊗ v

g ∶W ⊗ V → V ⊗W that sends the simple tensor

w ⊗ v → v ⊗w
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(b)

f ∶(V1 ⊕ V2)⊗W → (V1 ⊗W )⊕ (V2 ⊗W )
g ∶(V1 ⊗W )⊕ (V2 ⊗W )→ (V1 ⊕ V2)⊗W

as we defined in the notes

(c)

f ∶(V1 ⊗ V2)⊗ V3 → V1 ⊗ (V2 ⊗ V3)
g ∶V1 ⊗ (V2 ⊗ V3)→ (V1 ⊗ V2)⊗ V3

where in this case define the inverse map g as hinted in the notes and then prove it
actually is the inverse

6) Consider the following vector spaces with corresponding basis:

V1 =R3 BV1 = {e1, e2, e3}
W1 =R[t]≤2 BW1 = {1, t, t2}

V2 =M2×2(R) BV2 = {(
1 0
0 0
) ,(0 1

0 0
) ,(0 0

1 0
) ,(0 0

0 1
)}

W2 =M2×2(R) BW2 = {(
1 0
0 0
) ,(0 1

0 0
) ,(0 0

1 0
) ,(0 0

0 1
)}

Now consider the following two linear transformations T1 ∶ V1 →W1 and T2 ∶ V2 →W2 given
by

T1(
⎛
⎜
⎝

a
b
c

⎞
⎟
⎠
) = a + b − ct + at2

T2

⎛
⎝
(a1 a2
a3 a4

)
⎞
⎠
= (2a2 a4

a1 3a3
)

(a) (1 point) Write the corresponding basis for V1 ⊗ V2 and W1 ⊗W2

(b) (4 points) Recall we get the linear map

T1 ⊗ T2 ∶ V1 ⊗ V2 →W1 ⊗W2

(T1 ⊗ T2)(v1 ⊗ v2) = T1(v1)⊗ T2(v2)

Compute the matrix of this map with respect to the two basis you found in part a

Solution:

Unimportant Rmk: This is an example of what is called the Kronecker-Product of ma-
trices. It is an operation that takes an m × n and a k × l matrix and produces an mk × nl
matrix. This matrix is precisely the matrix of the tensor product of linear maps we defined
in class/on your mini-hw. I recommend looking it up- its a pretty cool thing.
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