Homework 3
Math 117 - Summer 2022

1) (4 points) Let V be finite dimensional and let W ¢ V be a subspace. Recall the defi-
nition of the annihilator of W, W¢ from class. Prove using dual basis that

dim(W?°) = dim(V') — dim(W)

(hint: extend basis....)

Solution:

2) (3 points) Let V be any vector space (potentially infinite dimensional). Prove that
(VW) =we

(Hint: Universal property of quotient....)
Remark: This isomorphism gives another proof of problem 1, in the case when V is finite
dimensional

Solution:

3) (3 points) Let V, W be finite dimensional vector spaces over F and let T: V' — W be a
linear map. Recall the isomorphism we constructed in class @y : V' — V** by sending v to
ev,. Prove that the following diagram commutes

Vs v

T\L l »

W e

ie, that @y o T = T** o &y, (Hint: Recall that 7% : V** - W** gends a linear functional
@ :V* = F to the linear functional g o T* : W* — F. That is T**(p) = poT* € W**. You will
then evaluate what this is on a linear functional v e W* )

Solution:

4) Let V be an n-dimensional vector space. We call a subspace of dimension n-1 a hyperplane.

(a) (1 point) If ¢ : V' - F is a nonzero linear functional, prove that ker(y) is a hyperplane



(b) (2 points) Prove moreover that every hyperplane is the kernal of a nonzero linear
functional.

(¢) (2 points) More generally, prove that a subspace of dimension d is the intersection of
n-d hyperplanes (ie, from part b, is the intersection of n-d kernals of linear functionals).
(Hint: Dual basis can be helpful here...)

Solution:

5) Let V, W be finite dimensional vector spaces over F.

(a) (3 points) Prove that
VeW*~L(V,IW)

(b) (2 points) Use this to prove that

(VeW) =~ L(V,W*)

Unimportant Remark: Writing out the duals, this isomorphism above is saying that
LV eW,F) = L(V,L(W,F))

That is, maps out of the tensor product of V and W into F correspond to maps from V into
maps from W to F. Such a result is in fact true more generally if we replace F with any
other vector space, and is a foundational result in category theory/algebra: the so called
“tensor-hom adjunction.” Cool stuff

Solution:

5") (You can either do the 5 above or this problem)
Prove that f and g are inverses of each for the examples we did in class:

(a)

f:VeW - W®V that sends the simple tensor
VOW > WV
g:WeV -V ®W that sends the simple tensor

WUV >V W

Page 2



f(VieVe)eW > (VieW)e (Voo W)
g(VieW)e (VooeW)—>(Viely) W
as we defined in the notes
(c)
f:(VieVy)e Vs> Vie(1heVs)
gVie(VaeVs) > (Vielz)e Vs

where in this case define the inverse map g as hinted in the notes and then prove it
actually is the inverse

6) Consider the following vector spaces with corresponding basis:
Vi =R? By, = {e1,e2,€3}
Wi =R[t]< Bw, ={1,t,t*}

e a YL ICICY
W2 :MQXZ(R) BWQ = {((1) 8) ) (8 (1)) ) ((; 8) ) (8 (1])}

Now consider the following two linear transformations 77 : Vi - Wy and T : Vo - W5 given
by

a
Ti(|b])=a+b-ct+at?
c

ayp Qs _ 2@2 a4
T2( (a3 CL4) ) B ( ay 3@3)
(a) (1 point) Write the corresponding basis for V; ® V5 and W ® W

(b) (4 points) Recall we get the linear map

Tely:VieV,-> W, @ W,
(T1 ® Tg)(’l)l ® UQ) = T1(U1) ® TQ(UQ)

Compute the matrix of this map with respect to the two basis you found in part a

Solution:

Unimportant Rmk: This is an example of what is called the Kronecker-Product of ma-
trices. It is an operation that takes an m xn and a k x [ matrix and produces an mk x nl
matrix. This matrix is precisely the matrix of the tensor product of linear maps we defined
in class/on your mini-hw. I recommend looking it up- its a pretty cool thing.
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